Some Fixed Point Theorems on Product of Uniform Spaces

Sanjay Kumar Gupta
Deptt. of Mathematics RJIT , BSF Academy, Tekanpur,Gwalior (M.P.) 475005 (India)
e-mail:drskgupta@rjit.org

Abstract

Nadler found a fixed point on product of metric spaces $X x Z$ for mappings on $X x Z$ which are uniformly continuous and also contraction in the first variable. Fora improved Nadler's result on larger class of spaces and for larger class of mappings. Tarafdar generalized the Banach contraction principle on a complete Hausdorff uniform space. In this paper we generalize results of Nadler as well as Fora on uniform spaces. In particular, fixed point techniques have been applied in engineering, game theory, and physics. The engineering applications of fixed point theorem are to find out the optimal performance and stability of linear and nonlinear filters, image restoration and image retrieval.

I. Introduction :

A topological space X is said to have the fixed point property if every continuous function f : $X \rightarrow X$ has a fixed point.

The problem of whether the fixed point property (in short f.p.p.) is or is not necessary invariant under cartesian products is an old one (see [2] and [3] for its history). Bredon showed that the answer is negative for the category of polyhedra with the Shih condition. The f.p.p. is preserved when the maps $f: X x Z \rightarrow X x Z$ have special contraction properties . Nadler and Fora have proved results are in this direction.

A. Nadler type results

Nadler proved two main results :
A-1 Theorem : Let (X, d) be a metric space. Let $A_{i}: X \rightarrow X$ be a function with at least one fixed point a_{i} for each $i=1,2$, \qquad - , and let $A_{0}: X \rightarrow$ X be a contraction mapping with fixed point a_{0}. If the sequence $\left\{A_{i}\right\}$ converges uniformly to A_{0}, then the sequence $\left\{a_{i}\right\}$ converges to a_{0}
A-2 Theorem : Let $\left(X, d_{x}\right)$ be a complete metric space, let $\left(Z, d_{z}\right)$ be a metric space with the f.p.p. and let f be a mapping from $X x Z$ into $X x Z$. If f is uniformly continuous on $X x Z$ and a contraction mapping in the first variable, then f has a fixed point.

We extend the class of complete metric spaces X to the class of complete Hausdorff uniform spaces and the class of metric spaces Z to the class of uniform spaces in which sequences are adequate. We prove :

A-3 Theorem : Let (X, \boldsymbol{u}) be a complete Hausdorff uniform space, Z a uniform space in which sequences are adequate and which has the f.p.p. If f $: X x Z \rightarrow X x Z$ is a uniformly continuous mapping which is a contraction in the first variable, then f has a fixed point in $X x Z$.
Proof : Since f is contraction in the first variable, therefore for any $z \in Z$ the mapping $f_{z}: X \rightarrow X$ is a contraction on X. Here f_{z} is defined as $f_{z}(x)=\pi_{l} f$ (x, z), where π_{l} is the projection of $X x Z$ on Z along Z.

Let $A^{*}(\boldsymbol{u})=\left\{\rho_{\alpha}: \alpha \in I\right\}$ be the augmented associated family of pseudometrics for \boldsymbol{u} on X, We construct a sequence $t_{n}(z)=t_{n}$ in X as follows :

$$
\begin{aligned}
& \text { Fora fixed } x_{0} \text { in } X \text { and for any } z \in Z \\
& t_{0}=x_{0}, t_{n}=\pi_{l} f\left(t_{n-1}, z\right)=f_{z}\left(t_{n-1}\right)=f_{z}^{n}
\end{aligned}
$$

$\left(t_{0}\right) ; n \geq 1$
Let $\alpha \in \mathrm{I}$ be arbitrary. If m and n are positive integers with $m>n$ then we have

$$
1,(z))
$$

$$
\rho_{\alpha}\left(t_{n}, t_{m}\right)=\rho_{\alpha}\left(\pi_{l} f\left(t_{n-l}, z\right), \pi_{l} f\left(t_{m-}\right.\right.
$$

$$
\begin{aligned}
& \rho_{\alpha}\left(f_{z}^{n}\left(t_{0}\right), f_{z}^{n} f_{z}^{m-n}\left(t_{0}\right)\right) \\
& \leq \\
&\left(\lambda_{\alpha}\right)^{n} \rho_{\alpha}\left(t_{o}, f_{z}^{m-n}\left(t_{0}\right)\right) \\
&=\left(\lambda_{\alpha}\right)^{n} \rho_{\alpha}\left(t_{o}, t_{m-n}\right) \\
&\left.+\rho_{\alpha}\left(t_{l}, t_{2}\right)+\cdots \cdots+\rho_{\alpha}\left(t_{m-n-1}, t_{m-n}\right)\right]\left(\lambda_{\alpha}\right)^{n}\left[\rho_{\alpha} \quad\left(t_{0}, t_{l}\right)\right. \\
&\left.+\cdots-\cdots+\left(\lambda_{\alpha}\right)^{m-n-1}\right] \leq\left(\lambda_{\alpha}\right)^{n}
\end{aligned} \rho_{\alpha}\left(t_{0}, t_{l}\right)\left[1+\lambda_{\alpha}\right)
$$

$$
\begin{aligned}
& <\frac{\left(\lambda_{\alpha}\right)^{n}}{1-\lambda_{\alpha}} \rho_{\alpha}\left(t_{0}, t_{1}\right) \\
& \rightarrow 0 \text { as,n>>}
\end{aligned}
$$

Above inequality implies $\left\{t_{n}\right\}$ is a ρ_{α} - Cauchy sequence (ie a Cauchy sequence in ρ_{α} topology). Since $\alpha \in I$ is arbitrary, $\left\{t_{n}\right\}$ is a ρ_{α} - Cauchy sequence.

Let $S_{p}=\left\{t_{n}: n \geq p\right\}$ for all positive integer p and let $B=\left\{S_{p}: p=1,2 \cdots--\right\}$ be the filter basis. It is easy to see the filter basis B is Cauchy in the uniform space (X, \boldsymbol{u}) To see this we first note that the family $\{H(\alpha, \epsilon): \alpha \in I, \in>0\}$ is a base for \boldsymbol{u}
.Now let $H \in \boldsymbol{u}$ be an arbitrary entourage. Then there exists $a v \in I$ and $\in>0$) such that $H(v, \in) \subset H$. Since $\left\{t_{n}\right\}$ is a ρ_{v} - Cauchy sequence in X, there exists a positive integer p such that $\rho_{v}\left(t_{n}, t_{m}\right)<\epsilon$ for $m \geq p, n \geq p$ this implied that $S_{p} x S_{p} \subset H(v, \in)$. Thus given any $\mathrm{H} \in \boldsymbol{u}$ we can find a $S_{p} \in B$ such that $S_{p} x S_{p} \subset H$.Hence B is a Cauchy filter in (X, \boldsymbol{u}). Since (X, \boldsymbol{u}) is complete and Housdorff, the Cauchy filter $B=\left\{S_{p}\right\}$ converges to a unique point $a \in X$ in the τ_{u} topology (uniform topology induced by uniformity \boldsymbol{u}). Thus $\tau_{u} \lim$ $S_{p}=a$. Now since f_{z} is ρ_{α} - continuous for each $\alpha \in I$, it follows that f_{z} is τ_{u} continuous .

$$
\text { Hence } f_{z}(a)=f_{z}\left(\tau_{u} \lim S_{p}\right)=\tau_{u} \lim f_{z}
$$ $\left(S_{p}\right)=\tau_{u} \lim S_{p+1}=a$. Thus a is a fixed point of f_{z}. Here a is unique fixed point of f_{z} as if we assume b is another fixed point of f_{z} such that $a \neq b$. Since (X, \boldsymbol{u}) is a Hausdorff space and $a \neq b$, there is an index $\beta \in I$ such that $\rho_{\beta}(a, b) \neq 0$. Since f_{z} is a contraction on X, we have

$$
\rho_{\beta}(a, b)=\rho_{\beta}\left(f_{z}(a), f_{z}(b)\right) \leq \lambda_{\beta} \rho_{\beta}(a,
$$

b)

Which is absurd as $0<\lambda_{\beta}<1$ and $\rho_{\beta}(a, b) \neq 0$. Hence a is unique fixed point of f_{z}.

Let $F: Z \rightarrow X$ be given by $F(z)=a$ the unique fixed point of f_{z}. Now let $z_{0} \in Z$ and let $\left\{z_{i}\right\}$ be a sequence of points of Z which converges to z_{0}. By the assumption of this theorem, the sequence $\left\{f_{z i}\right\}$ converges uniformly to $f_{z 0}$ and hence, by theorem A_{1}, the sequence $\left\{F\left(z_{i}\right)\right\}$ converges to $F\left(z_{0}\right)$. Therefore F is continuous on Z. Next let G $: Z \rightarrow Z$ be the continuous mapping defined by $G(z)=\pi_{2} f(F(z), z)$ for each $z \in Z$, where π_{2} is the projection of $X x Z$ on Z along X. Since Z has the f.p.p. there is a point $p \in Z$ Such that $G(p)=p$. Therefore $p=G(p)=\pi_{2} f(F(p), p)$. It follows that $(F(p), p)$ is a fixed point of f. This completes the proof of the theorem.
A-4 Corollary : Let (X, \boldsymbol{u}) be a complete Hausdorff uniform space and let Z a uniform space in which sequences are adequate and which have
the f.p.p. If $f: X x Z \rightarrow X x Z$ is a mapping which is a contraction mapping in each variable separately then f has a fixed point in $X x Z$.

Here we note that Theorem A-2 also corollary of above Theorem A-3.

B. Fora type results :

Fora's improvements of Nadler's results are based on the observation that in Nadler's results , metric character of Z is not necessary, uniform continuity of f is too strong and contraction condition is sufficient even if it is available locally. Therefore Fora replaced X by a complete metric space, Z by any topological space, uniformly continuous f by a continuous f and f being contraction in the first variable by the condition that f is locally contraction in the first variable. We generalize Fora's result as follows:
B-1 Theorem : Let (X, \boldsymbol{u}) be a complete Hausdorff uniform space, Z a topological space with the f.p.p., $f: X x Z \rightarrow X x Z$ be a locally contraction mapping in the first variable. If f is continuous when the topology on X is given by any uniformly continuous pseudometric on $X x Z$, then f has a fixed point.
Proof : Let $\left\{\rho_{\alpha}: \alpha \in I\right\}$ be the collection of all uniformly continuous pseudometrics on X. Let $x_{0} \in X$ be fixed and for any $z \in Z$, we construct a sequence $t_{n}(z)=t_{n}$ in X as follows:
$t_{0}=x_{0}, t_{n}=\pi_{1} f\left(t_{n-1}, z\right) ; n \geq 1$
Step $-\mathbf{I}:\left\{t_{n}\right\}$ is a Cauchy sequence in (X, u)
Since f is locally contraction in the first variable, for each $\alpha \in I$ there exists a real number $\lambda_{\alpha} \in[0,1)$ such that
$\rho_{\alpha}\left(\pi_{l} f\left(t_{n-l}, z\right), \pi_{l} f\left(t_{n}, z\right)\right) \leq \lambda_{\alpha} \rho_{\alpha}\left(t_{n-l}, t_{n}\right)$
or $\quad \rho_{\alpha}\left(t_{n}, t_{n+1}\right) \leq \lambda_{\alpha} \rho_{\alpha}\left(t_{n-1}, t_{n}\right)$
Using triangular inequality, we find for $m>n$
$\rho_{\alpha}\left(t_{n}, t_{m}\right) \leq \rho_{\alpha}\left(t_{n}, t_{n+1}\right)+\rho_{\alpha}\left(t_{n+1}, t_{n+2}\right)+\cdots-----+$ $\rho_{\alpha}\left(t_{m-l}, t_{m}\right)$

$$
\leq\left(\lambda_{\alpha}^{n}+\lambda_{\alpha}^{n+1}+---+\lambda_{\alpha}^{m-1}\right) \rho_{\alpha}\left(t_{0}\right.
$$

t_{l})

$$
\begin{aligned}
& =\frac{\lambda_{\alpha}^{n}\left(1-\lambda_{\alpha}^{m-n}\right)}{1-\lambda_{\alpha}} \rho_{\alpha}\left(t_{0}, t_{l}\right) \\
& <\frac{\lambda_{\alpha}^{n}}{1-\lambda_{\alpha}} \rho_{\alpha}\left(t_{0}, t_{l}\right)
\end{aligned}
$$

Since $\lambda_{\alpha}^{n} \rightarrow 0$ as $n \rightarrow \infty$, this inequality shows that $\left\{t_{n}\right\}$ is a $\rho_{\alpha^{-}}$Cauchy sequence(ie a Cauchy sequence in ρ_{α}-topology). Since $\alpha \in I$ is arbitrary, $\left\{t_{n}\right\}$ is a $\rho_{\alpha^{-}}$Cauchy sequence .

Let $B=\left\{S_{p}: p \in N\right\}$ where $S_{p}=\left\{t_{n}: n \geq p\right\}$ be a Cauchy filter base in (X, \boldsymbol{u}). To see this we first
note that the family, $\{H(\alpha, \in): \alpha \in I, \in>0\}$ is a base fo \boldsymbol{u} as $A^{*}(\boldsymbol{u})=\left\{\rho_{\alpha}: \alpha \in I\right\}$. Now let $H \in \boldsymbol{u}$ be an arbitrary entourage.Then there exist a $v \in I$ and $\in>0$ such that $H(v, \in) \subset H$. Now since $\left\{t_{n}\right\}$ is a $\rho_{\alpha^{-}}$ Cauchy sequence in X , there exists a positive integer P such that $\rho_{v}\left(t_{n}, t_{m}\right)<\in$ for all $m \geq p, n \geq p$. This implies that $S_{p} x S_{p} \subset H$ (v, \in). Thus given any $H \in \boldsymbol{u}$ we can find a $S_{p} \in B$ such that $S_{p} x S_{p} \subset$ H. Hence B is a Cauchy filter in (X, \boldsymbol{u}). Since (X, $\boldsymbol{u})$ is complete and Hausdorff, the Cauchy filter B $=\left\{S_{p}\right\}$ converges to a point say t_{z} in X.

Let mapping $g: Z \rightarrow Z$ defined as $g(z)=\pi_{2} f\left(t_{z}, z\right)$ where π_{2} is the projection of X $x Z$ on Z along X.

Step II : $g: Z \rightarrow Z$ is continuous.

Let $z \in Z$ and U be an open set containing $g(z)$. Then $f\left(t_{z}, z\right) \in X x U$. Since f is continuous at $\left(t_{z}\right.$, z)when X is assigned the topology $\tau(\rho)$ in which ρ $\in A^{*}(\boldsymbol{u})$ implies $\rho=\rho_{\alpha}$ for some $\alpha \in I$, there exists an open set $G \subset Z$ and a real number $\in>0$ such that

$$
\begin{aligned}
& \left(t_{z}, z\right) \in S\left(t_{z}, \in, \rho\right) x G \text { and } \\
& f\left(S\left(t_{z}, \in, \rho\right) x G \subset X x U\right.
\end{aligned}
$$

Also f is locally contraction in the first variable . Therefore there exists an open set W, containing z and $\lambda \in[0,1)$ such that

$$
\rho\left(\pi_{1} f(x, v), \pi_{1} f\left(x_{*}, v\right)\right) \leq \lambda \rho(x
$$

, x_{*})
for all $x, x_{*} \in X$ and all $v \in W$.
Since $\lambda^{m} \rightarrow 0$ as $m \rightarrow \infty$, we all choose $n \geq 1$ such that

$$
\lambda^{n}<\frac{\epsilon}{8}\left(\frac{1-\lambda}{\rho\left(t_{0}, t_{1}\right)+(\in / 8)}\right) \text { and } \rho\left(t_{z}, t_{m}\right)<\frac{\epsilon}{8}
$$

for all $m \geq n$
Since $f\left(t_{n}, z\right) \in X x U$ and f is continuous at $\left(t_{n}, z\right)$, there exists a basic open set $U_{n} x V_{n}$ in $X x Z$ such that

$$
\begin{gathered}
\left(t_{n}, z\right) \in U_{n} x V_{n}, U_{n} \subset S\left(\frac{\epsilon}{8}, t_{z}, \rho\right), \\
V_{n} \subset G \cap W \text { and } f\left(U_{n} x V_{n}\right) \subset X x U .
\end{gathered}
$$

Since f is continuous at $\left(t_{n-1}, z\right)$ and $f\left(t_{n-1}, z\right) \in U_{n} x Z$, there exists a basic open set $U_{n-1} x V_{n-1}$ in $X x Z$ such that
$\left(t_{n-1}, z\right) \in U_{n-1} x V_{n-1}, U_{n-1} \subset S\left(\frac{\epsilon}{8}, t_{n-1}, \rho\right)$,
$V_{n-1} \subset V_{n}$ and $f\left(U_{n-1} x V_{n-1}\right) \subset U_{n} x Z$.
Continuing this way we construct sets U_{n}, U_{n-1} $, \ldots, U_{0}, V_{n}, V_{n-1}, \ldots, V_{0}$ such that, for $0 \leq i \leq(n-1)$

$$
\begin{aligned}
& \left(t_{i}, z\right) \in U_{i} x V_{i}, U_{i} \subset S\left(\frac{\epsilon}{8}, t_{i}, \rho\right) \\
& V_{i} \subset V_{i+1} \text { and } f\left(U_{i} x V_{i}\right) \subset U_{i+1} x Z .
\end{aligned}
$$

It remains to show that $g\left(V_{0}\right) \subset U$:

Let $y \in V_{0}$. Then from the above mention
properties we have $\left(t_{0}^{\prime}, y\right) \in U_{0} x V_{0}$,
Where $t_{0}^{\prime}=x_{0}$. Thus $f\left(t_{0}^{\prime}, y\right) \in U_{1} x$ Z ie. , $t_{1}^{\prime}=\pi_{1} f\left(t_{0}^{\prime}\right.$, y) $\in U_{l}$,
consequently $\rho\left(t_{1}^{\prime}, t_{l}\right)<\frac{\epsilon}{8}$.
Using the triangular inequality we have
$\rho\left(t_{0}^{\prime}, t_{1}^{\prime}\right)=\rho\left(t_{0}, t_{l}^{\prime}\right) \leq \rho\left(t_{0}, t_{1}\right)+\rho\left(t_{1}, t_{1}\right)<\rho\left(t_{0}\right.$, $\left.t_{l}\right)+\frac{\in}{8}$.
Since $f\left(U_{1} x V_{I}\right) \subset U_{2} x Z$ and $\left(t_{1}^{\prime}, y\right) \in U_{1} x V_{1}$ therefore $f\left(t_{1}, y\right) \in U_{2} x Z$
ie $t_{2}^{\prime}=\pi_{1} f\left(t_{1}, y\right) \in U_{2}$.
In this way we find the sequence $t_{n}^{\prime}(y)=$ t_{n}^{\prime},forwhich $t_{i}^{\prime}=\pi_{l} f\left(t_{i-1}^{\prime}, y\right) \in U_{i} ; i=1,2,--, n$.
Moreover, $t_{n} \in U_{n}$ and $U_{n} \subset S\left(\frac{\in}{8}, t_{z}, \rho\right)$, therefore $\rho\left(t_{n}^{\prime}, t_{z}\right)<\frac{\in}{8}$.
Using the triangle inequality we find, for $\mathrm{m} \geq \mathrm{n}$.
$\rho\left(t_{n}^{\prime}, t_{z}\right) \leq \rho\left(t_{z}, t_{n}^{\prime}\right)+\rho\left(t_{n}^{\prime}, t_{n+1}^{\prime}\right)+\cdots \cdots-\cdots+\cdots$ $\left(t_{m-1}^{\prime}, t_{m}^{\prime}\right)$

$$
\begin{aligned}
& <\frac{\epsilon}{8}+\lambda^{n} \rho\left(t_{0}^{\prime}, t_{1}^{\prime}\right)+\cdots+\lambda^{m-1} \rho\left(t_{0}^{\prime}, t_{1}^{\prime}\right) \\
& =\frac{\lambda^{n}}{1-\lambda} \rho\left(t_{0}^{\prime}, t_{1}^{\prime}\right)+\frac{\epsilon}{8} \\
& <\left(\frac{\lambda^{n}}{1-\lambda}\right)\left(\rho\left(t_{0}^{\prime}, t_{1}\right)+\frac{\epsilon}{8}\right)+\frac{\epsilon}{8} \\
& <\frac{\epsilon}{8}+\frac{\epsilon}{8}=\frac{\epsilon}{4}
\end{aligned}
$$

If $t_{y}=\lim t_{n}^{\prime}$, then the above inequality shows that $\rho\left(t_{y}, t_{z}\right) \leq \in / 4$.Therefore $\left(t_{y}, y\right) \in S\left(\in, t_{z}, \rho\right)$
and consequently $f\left(t_{y}, y\right) \in X x U$, ie., $g(y)=\pi_{I} f\left(t_{y}\right.$, $y) \in U$. Therefore our claim is proved and
hence g is continuous.
Step-III : $\boldsymbol{\pi}_{\boldsymbol{I}} \boldsymbol{f}\left(\boldsymbol{t}_{z}, z\right)=\boldsymbol{t}_{z}$
If possible, let $u=\pi_{1} f\left(t_{z}, z\right) \neq t_{z}$. Since the uniform space X is Hausdorff, there exists a pseudometric ρ on X such that $\rho\left(u, t_{z}\right)=\epsilon>0$.

Since f is continuous on $X x Z$ and X is assigned the topology $\tau(\rho)$, we have open sets U and V such that

$$
\begin{aligned}
& \left(t_{z}, z\right) \in U x V, U \subset S\left(\frac{\epsilon}{4}, t_{z}, \rho\right) \text { and } f(U x V) \subset S(\\
& \left.\frac{\epsilon}{4}, u, \rho\right) x Z .
\end{aligned}
$$

Since $\lim t_{n}=t_{z}$, there is a natural number $k \geq 1$ such that $t_{n} \in U$ for all $n \geq k$. Therefore
$f\left(t_{k}, z\right) \in S\left(\frac{\in}{4}, u, \rho\right) x Z$, ie $t_{k+1}=\pi_{l} f\left(t_{k}, z\right) \in S\left(\frac{\in}{4}\right.$, $u, \rho)$.

Also $t_{k+1} \in U \subset S\left(\frac{\epsilon}{4}, t_{z}, \rho\right)$. This contradicts the fact that $\rho\left(t_{z}, u\right)=\epsilon$. Therefore our assumption is false and consequently we have the required conclusion.

Now as in step II of the theorem $B-1, g: Z \rightarrow Z$ is continuous. Since Z has the fixed point property, therefore there exist $z_{0} \in Z$ such that $g\left(z_{0}\right)=z_{0}$. As in step-III above we have $\pi_{1} f\left(t_{z}, z_{0}\right)=t_{z 0}$. But $z_{0}=g\left(z_{o}\right)=\pi_{2} f\left(t_{z 0}, z_{0}\right)$. Hence $f\left(t_{z 0}, z_{0}\right)=\left(t_{z 0}, z_{0}\right)$ ie, $\left(t_{z 0}, z_{0}\right)$ is a fixed point of f. This completes the proof.

It is obvious that Theorem A-2 is a corollary to the above Theorem B-1. We also get as a corollary to this Theorem the following result mentioned by Fora [4].
B-2 Corollary : Let (X, d) be a complete metric space, Z be a topological space with the f.p.p. and $f: X x Z \rightarrow X x Z$ a continuous mapping. If f is a contraction in the first variable, then f has a fixed point.

References

[1] Bredon G.: 'Some examples of fixed point property', Pacific J. Math. 38 (1971), 571-573
[2] Brown R.F. : 'On some old problems of fixed point theory', Rocky Mountain. J. Math., 4 (1974), 3-14.
[3] Fadell E.R. : 'Recent results in the fixed point theory of continuous maps,' Bull. Amer. Math. Soc., 76 (1970), 10-29.
[4] Fora A.A. : 'A fixed point theorem for product spaces' pacific J. Math. 99 (1982), 327-335
[5] Husseni S.Y.: 'The product of manifolds with f.p.p. need not have the f.p.p.,' Amer.J. 99 (1977) ,919-931.
[6] Lee Cheng-Ming : 'A development of contraction mapping principles on Hausdorff uniform spaces', Trans. Amer. Math. Soc. (1977), 147-159.
[7] Nadler Jr. S.B. : 'Sequence of contractions and fixed points', Pacific.J. Math..

27 (1968), 579-585.
[8] Rhoades B.E. : 'A Comparison of various definitions of contractive mappings', Trans. Amer.Math.Soc. $\underline{226}$ (1977), 257290.
[9] Tarafdar E.: 'An approach to fixed point theorems in uniform spaces',
Trans. Amer.Math. Soc. 191 (1974), 209225.

